

Life Cycle of a Process Plant

Edited by Mahdi Nouri and Eberhard Lucke

LIFE CYCLE OF A PROCESS PLANT

Edited by

Mahdi Nouri

Triumph Gas Technology Consulting, LLC, Houston, TX, United States

EBERHARD LUCKE

Lucke Consulting Technology Services, LLC, Houston, TX, United States

Contents

Contributors			vii		3.3	Basis of Design	60	
"Begin with the End in Mind."			ix		3.4	Process development	63	
DC	giii wi	th the Blu in Minu.	IX		3.5	Role of process engineer during the		
						FEED	63	
1.	General guidelines and definitions EBERHARD LUCKE		1			rences	74	
						ner reading	74 75	
	1.1	Process design	2	4.		Cost estimating		
	1.2	Gated design process	5			R G. KAUDERS		
	1.3	Facility siting	8		4.1	Introduction	75	
	1.4	Fabrication and construction terms	10		4.2	Basic concepts for studies	76	
	1.5	Sustainability	10		4.3	The engineering stage	85	
	1.6	Lean manufacturing	11		4.4	Conceptual design emulation	87	
	1.7	CAFE	12			endix A: Estimating gas pipelines and		
	1.8	NextGen facilities	12		-	pressor stations	91	
	1.9	Business sectors	13			endix B: CDE modeling results for a gas		
	1.10	Capital estimate classifications	14		_	t amine unit	96	
	1.11	Permitting	14		Refe	rences	98	
	1.12	Cradle to grave	20	5.	Fabri	ication and construction	101	
	1.13	Cradle to cradle	20		Нема	awatee Indira Ramroop		
	1.14	Internet of Things	20		5.1	Construction management team	102	
	1.15	Digital Twin	21		5.2	Quality of FEED and work packages	104	
	1.16	Other definitions	21		5.3	Procurement and expediting	105	
2.	Feasibility studies		27		5.4	Selection of fabrication method	110	
	Peter	G. KAUDERS			5.5	Selection of construction method	111	
	2.1	Introduction	27		5.6	Mechanical completion	116	
	2.2	The process industries	28	6.	Com	missioning and testing	121	
	2.3	The importance of chemistry	28		Eberi	hard Lucke		
	2.4	Chemical engineering: an essential			6.1	Definition of terms	123	
		skill	30		6.2	Testing	129	
	2.5	Phase equilibria	33	7.	Start	-up and performance test	141	
	2.6	Chemical reactions	34			hard Lucke		
	2.7	Chemical engineering drawings	36		7.1	Readiness for start-up	141	
	2.8	Engineering skills	41		7.2	Start-up plan and schedule	144	
	2.9	Business skills	41		7.3	Status reporting	146	
	2.10	Report writing	41		7.4	Temporary modifications for start-up	146	
	2.11	Classification of studies	42		7.5	Material cost control	147	
	2.12	Project planning studies	42		7.6	Training	148	
	2.13	Feasibility	49		7.7	System turnover to operations	148	
	2.14	The feasibility study report	56		7.8	Integrated approach	153	
	2.15	Pre-FEED work	57	8.		ration, maintenance, and turnarounds	157	
	References		57		_	hard Lucke		
3.	Process design		59		8.1	Operations philosophy	158	
	Edgar Amaro Ronces				8.2	Operations staffing considerations	158	
	3.1	The role of a FEED package in the			8.3	Maintenance philosophy	161	
		definition of the project	59		8.4	Maintenance cost and budgeting	171	
	3.2	Importance of process design during FEED	60		8.5	Turnarounds	178	

vi			Con	itents				
9.	Process plant optimization, debottlenecking,				10.2	Tank inventory management	200	
	and re	vamps	187		10.3	Environmental considerations	200	
	Larry Lilly				10.4	Disposal or materials	201	
	9.1	Overall procedure	188		10.5	Reuse	201	
	9.2	Defining the boundaries	188		10.6	Repurpose	202	
	9.3	Setting the operating boundaries	190		10.7	Most common mistakes	203	
	9.4	Product values	191	91 11. Proj		t management in oil and gas	205	
	9.5	Utility costs	191		Vahid	AHID FAGHIHI		
	9.6	What equipment to choose for initial			11.1	Introduction	206	
		review?	192		11.2	Project management in oil and gas		
	9.7	Process variables to consider	192			industry	206	
	9.8	Energy optimization	192		11.3	Project Management Body of		
	9.9	Flow/capacity optimization	192			Knowledge (PMBOK)	211	
	9.10	Financial optimization	193		11.4	Conclusion	231	
	9.11	Facilities optimization guideline	193		Acknowledgments		232	
	Further reading		195		References		232	
10.	End of plant life		197					
	Larry Lilly and Hemawatee Indira Ramroop			Inde	X		235	
	10.1	Plant shutdown	198					

Contributors

Vahid Faghihi Construction Science Department, School of Architecture, Prairie View A&M University, Prairie View, TX, United States

Peter G. Kauders CDE Projects Ltd, London, United Kingdom

Larry Lilly Consulting, Norman, OK, Unites States

Eberhard Lucke Lucke Consulting Technology Services LLC, Houston, TX, United States

Hemawatee Indira Ramroop Lucke Consulting Technology Services LLC, Trincity, Trinidad and Tobago, West Indies

Edgar Amaro Ronces

11

Project management in oil and gas

Vahid Faghihi

Construction Science Department, School of Architecture, Prairie View A&M University, Prairie View, TX, United States

			Б			
	0	UTLIN	E			
11.1	Introduction	206		11.3.3.1	Plan schedule management	214
112	Desirat management in all and marindestons	206		11.3.3.2	Define activities	215
11.2	Project management in oil and gas industry 11.2.1 Why portfolio management?	206		11.3.3.3	Sequence activities	215
	11.2.1 Why program management?	207		11.3.3.4	Estimate activity durations	215
	11.2.2 why program management: 11.2.3 Program management framework	207		11.3.3.5	Develop schedule	215
	11.2.4 Program management methodology in	209		11.3.3.6	Control schedule	216
	0 0	209	11.3.4	Project co	st management	216
	industry investments			11.3.4.1	Plan cost management	216
	11.2.4.1 Program set-up	210 210		11.3.4.2	Estimate costs	216
	11.2.4.2 Deliver program benefits	210		11.3.4.3	Determine budget	217
	11.2.4.3 Assurance platform	210		11.3.4.4	Control costs	217
	11.2.4.4 Management platform 11.2.4.5 Close program	211	11.3.5	Project qu	ality management	217
	11.2.4.5 Close program	211		11.3.5.1	Plan quality management	217
11.3	Project Management Body of Knowledge			11.3.5.2	Manage quality	218
	(PMBOK)	211		11.3.5.3	Control quality	218
	11.3.1 Project integration management	211	11.3.6	Project res	source management	219
	11.3.1.1 Develop project charter	211		11.3.6.1	Plan resource management	219
	11.3.1.2 Develop project management			11.3.6.2	Estimate activity resources	219
	plan	212		11.3.6.3	Acquire resources	220
	11.3.1.3 Direct and manage project			11.3.6.4	Develop and manage team	
	work	212			and control resources	220
	11.3.1.4 Manage project knowledge	213	11.3.7	Project co	mmunications management	220
	11.3.1.5 Monitor and control project			11.3.7.1	Plan communications	
	work	213			management	221
	11.3.1.6 Perform integrated change				Manage communications	221
	control	213		11.3.7.3	Monitor communications	221
	11.3.1.7 Close project or phase	213	11.3.8		k management	222
	11.3.2 Project scope management	213			Plan risk management	222
	11.3.2.1 Plan scope management	213			Identify risks	222
	11.3.2.2 Collect requirements	213		11.3.8.3	Perform qualitative risk	
	11.3.2.3 Define scope	214			analysis	222
	11.3.2.4 Create WBS	214		11.3.8.4	Perform quantitative risk	
	11.3.2.5 Validate scope	214			analysis	223
	11.3.2.6 Control scope	214		11.3.8.5	Plan and implement risk	
	11.3.3 Project schedule management	214			responses and monitor risks	223

11.3.9	Project procurement management	223			11.3.12.2	Perform environmental	
	11.3.9.1 Plan procurement management	224				assurance	229
	11.3.9.2 Conduct procurements	224			11.3.12.3	Perform environmental control	229
	11.3.9.3 Control procurements	225		11.3.13	Project fin	ancial management	229
11.3.10	Project stakeholder management	225			11.3.13.1	Financial planning	230
	11.3.10.1 Identify stakeholders	226			11.3.13.2	Perform financial control	230
	11.3.10.2 Plan stakeholder management	226			11.3.13.3	Financial administration and	
	11.3.10.3 Manage stakeholder					records	230
	engagement	226		11.3.14	•	uim management	231
	11.3.10.4 Monitor stakeholder				11.3.14.1	Claim identification	231
	engagement	227			11.3.14.2	Claim quantification	231
11.3.11		227			11.3.14.3	Claim prevention and	
	11.3.11.1 Safety planning	227				resolution	231
	11.3.11.2 Perform safety assurance	228	11.4	Conclus	ion		231
11.3.11.3 Perform safety control	228						
	1.3.12 Project environmental management	229	Ackn	Acknowledgments			232
	11.3.12.1 Environmental planning	229	Refer	ences			232
	1 0						

11.1 Introduction

The oil and gas industry is divided into three primary sectors: upstream, midstream, and downstream. The backstream sector has also become a recent development. Projects in this industry are very diverse, and it all depends on the sector it deals with.

Upstream focuses on the stage of exploration, which ultimately deals with searching for oil and gas at the subsurface. This involves programs for the production of hydrocarbons offshore in the oil fields and requires a team of engineers and geophysicists as well. Among upstream projects, there are several types, including maintenance, enhanced oil recovery methods, and infrastructure development to maximize production and benefits [1].

Midstream focuses on refining crude oil to fractions that can be used to create fuels and other useful chemicals, which requires the help of chemical engineers and petroleum engineers. Projects involving the transportation of oil and gas from the fields and into the market are also included in this sector.

Downstream focuses on converting crude oil into other high-demand products such as common plastics and petrochemicals. Such projects are intense on a large scale of demand and deal with wholesale of refined products [2].

Backstream focuses on managing the byproducts developed in midstream and downstream and finding methods to recycle and store waste products such as carbon dioxide that are formed during the refining processes. Interestingly, backstream projects require a similar skillset to that of the upstream industry, and indeed this is where some major oil and gas companies are diversifying into today [3].

As the oil and gas industry continues to develop, so do the project management methods that apply to them. The oil and gas industry has boomed to a high-scale industry and is very in demand, and project management methods must accommodate for that [4].

11.2 Project management in oil and gas industry

11.2.1 Why portfolio management?

A different set of tools and approaches are required for delivering a portfolio of small capital projects in the gas distribution industry for a mixture of compliance, service area improvement, and replacement/service life extension than large project delivery. While working with the clients, several tools and approaches have been developed to identify and prioritize these efforts and deliver them efficiently as possible (see Fig. 11.1).

Managing a portfolio of projects is an ongoing effort where a combination of business planning, project validation, supply chain and delivery management, and long-term asset management all enter into effective delivery of a large number of smaller projects.